(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0)) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
and(mark(X1), X2) →+ mark(and(X1, X2))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X1 / mark(X1)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
active, s, plus, and, proper, top

They will be analysed ascendingly in the following order:
s < active
plus < active
and < active
active < top
s < proper
plus < proper
and < proper
proper < top

(8) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
s, active, plus, and, proper, top

They will be analysed ascendingly in the following order:
s < active
plus < active
and < active
active < top
s < proper
plus < proper
and < proper
proper < top

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Induction Base:
s(gen_tt:mark:0':ok3_0(+(1, 0)))

Induction Step:
s(gen_tt:mark:0':ok3_0(+(1, +(n5_0, 1)))) →RΩ(1)
mark(s(gen_tt:mark:0':ok3_0(+(1, n5_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
plus, active, and, proper, top

They will be analysed ascendingly in the following order:
plus < active
and < active
active < top
plus < proper
and < proper
proper < top

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3350)

Induction Base:
plus(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))

Induction Step:
plus(gen_tt:mark:0':ok3_0(+(1, +(n335_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3350)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
and, active, proper, top

They will be analysed ascendingly in the following order:
and < active
active < top
and < proper
proper < top

(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
and(gen_tt:mark:0':ok3_0(+(1, n1529_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n15290)

Induction Base:
and(gen_tt:mark:0':ok3_0(+(1, 0)), gen_tt:mark:0':ok3_0(b))

Induction Step:
and(gen_tt:mark:0':ok3_0(+(1, +(n1529_0, 1))), gen_tt:mark:0':ok3_0(b)) →RΩ(1)
mark(and(gen_tt:mark:0':ok3_0(+(1, n1529_0)), gen_tt:mark:0':ok3_0(b))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(16) Complex Obligation (BEST)

(17) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3350)
and(gen_tt:mark:0':ok3_0(+(1, n1529_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n15290)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
active, proper, top

They will be analysed ascendingly in the following order:
active < top
proper < top

(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol active.

(19) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3350)
and(gen_tt:mark:0':ok3_0(+(1, n1529_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n15290)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
proper, top

They will be analysed ascendingly in the following order:
proper < top

(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol proper.

(21) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3350)
and(gen_tt:mark:0':ok3_0(+(1, n1529_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n15290)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

The following defined symbols remain to be analysed:
top

(22) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(23) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3350)
and(gen_tt:mark:0':ok3_0(+(1, n1529_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n15290)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

No more defined symbols left to analyse.

(24) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(25) BOUNDS(n^1, INF)

(26) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3350)
and(gen_tt:mark:0':ok3_0(+(1, n1529_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n15290)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

No more defined symbols left to analyse.

(27) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(28) BOUNDS(n^1, INF)

(29) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
plus(gen_tt:mark:0':ok3_0(+(1, n335_0)), gen_tt:mark:0':ok3_0(b)) → *4_0, rt ∈ Ω(n3350)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

No more defined symbols left to analyse.

(30) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(31) BOUNDS(n^1, INF)

(32) Obligation:

TRS:
Rules:
active(and(tt, X)) → mark(X)
active(plus(N, 0')) → mark(N)
active(plus(N, s(M))) → mark(s(plus(N, M)))
active(and(X1, X2)) → and(active(X1), X2)
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(s(X)) → s(active(X))
and(mark(X1), X2) → mark(and(X1, X2))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
s(mark(X)) → mark(s(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(0') → ok(0')
proper(s(X)) → s(proper(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Types:
active :: tt:mark:0':ok → tt:mark:0':ok
and :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
tt :: tt:mark:0':ok
mark :: tt:mark:0':ok → tt:mark:0':ok
plus :: tt:mark:0':ok → tt:mark:0':ok → tt:mark:0':ok
0' :: tt:mark:0':ok
s :: tt:mark:0':ok → tt:mark:0':ok
proper :: tt:mark:0':ok → tt:mark:0':ok
ok :: tt:mark:0':ok → tt:mark:0':ok
top :: tt:mark:0':ok → top
hole_tt:mark:0':ok1_0 :: tt:mark:0':ok
hole_top2_0 :: top
gen_tt:mark:0':ok3_0 :: Nat → tt:mark:0':ok

Lemmas:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_tt:mark:0':ok3_0(0) ⇔ tt
gen_tt:mark:0':ok3_0(+(x, 1)) ⇔ mark(gen_tt:mark:0':ok3_0(x))

No more defined symbols left to analyse.

(33) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
s(gen_tt:mark:0':ok3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(34) BOUNDS(n^1, INF)